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Abstract. Branched polymers are most usually synthesized in the vicinity of a sol-gel tran- 
sition and are very polydisperse. The number distribution was shown experimentally to be 
the same as in percolation. This may be described by two characteristic masses, N ,  and 
Nw, that diverge with different exponents. Similarly, one finds that there is a continuous 
distributionofrelaxation times,varyingasapowerlawcut-offat large times by anexponential 
decay. In the reaction bath, this distribution is related to the viscoelastic properties. In a 
dilute solution, it may be related to the distribution of masses. In both cases, two diverging 
times may be defined. We review the properties of these distributions of relaxation times, 
and consider the consequences on the relaxation of branched polymers in the reaction bath 
and in solution. 

1. Introduction 

Much attention has been paid recently to the properties of randomly branched polymers 
and gels close to the gelation threshold [l-151. This is partly related to the intrinsic 
polydispersity that is present in such systems. Indeed, it was shown experimentally that 
the synthesis of most of these systems may be described by percolation. Such description 
was initiated by Flory and Stockmayer [ 11 some years ago, in the loopless approximation, 
and extended more recently by Stauffer [16] and de Gennes [3] to the critical region that 
is present in the vicinity of the gelation transition. One of the main results of these 
approaches, both theoretical [16] and experimental [&SI is that the sol, made of finite 
but large polymers, contaim a broad distribution of molecular weights. Such distribution 
is self similar [4], with smaller polymers residing in the holes of the large fractal [17] 
polymers. It was shown that the number distribution, that is the probability P ( N ,  E )  of 
finding a macromolecule made of N monomers at a distance E from the gelation 
threshold, is 

P ( N ,  E) - N-"(&N") (1) 

z = 1 + d / D ,  

with 

(2) 

where a i s  a percolation exponent, d the dimension of space and D, the fractal dimension 
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of the polymers in the reaction bath. A polymer made of N monomers has a radius R(N), 
with 

N - R ( N ) D ~ .  (3) 

The distribution equation (1) is characterized not by a single, but by two diverging 
masses, namely 

N ,  - N 2 P ( N ,  E )  dN - (4) 

Such a very broad distribution leads to measurements of effective fractal dimensions 
[ 18-20] instead of the actual ones in the static properties. For instance, the intensity S ( q )  
of scattered radiation by a dilute solution of branched polymers in the intermediate 
range, R;' @ q @ I - ' ,  where I is the monomer size and q the momentum transfer, is 

(6a) S ( q )  - q - D ( 3 - T )  

instead of the usual 

SI ( 4 )  - 4 - O  

valid for a fractal with dimension D, when no polydispersity is present. 
In the following, it will be shown that the relaxation spectrum in such systems is also 

very broad, decaying as a power-law cut-off by an exponential decay at long times. It 
may be characterized by two diverging times, even in a dilute solution, as we will see in 
section 3. In section 4 some consequences for the stress relaxation in the reaction bath, 
for the light scattering intensity by a dilute solution are outlined. As we shall see, changes 
such as stretched exponential or power-law relaxations are expected. 

2. The reaction bath 

2.1. Scaling 

The sol-gel transition may be characterized [ 3 ]  by a divergence of the viscosity q of the 
sol at the gelation threshold: 

17 - ( E - +  0 - ) .  ( 7 )  

E - E V  (.E+ 0,) (8) 

It may also be characterized by a vanishing elastic modulus E above the threshold: 

where s and p are exponents to be discussed below. It is then possible [21] to define a 
complex frequency-dependent modulus E and a complex viscosity f j (  0) such that 

E(o) = iofj(w) = ~ ( w )  + i w y ( w )  (9) 

where i = qq and E ( w )  and q(o) are the frequency-dependent modulus and viscosity, 
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respectively. Relations ( 7 )  and (8) are the zero frequency limits of both quantities. It is 
postulated [22-241 that the following scaled form for the complex viscosity holds 

v(o) - CSfi (iwT) (10) 

( 1 1 )  

where Tis the largest diverging time in the system. It was shown that 
T - E - S - P  

and f i ( x )  is a function with known limits. Both E and f j  are response functions and may 
be directly related to the distribution H ( z )  of relaxation times of the system [25]: 

i j (w)  - j a d z  1 - iwt  

From knowledge of the scaled form of the complex viscosity, it is possible to obtain 
the scaling of H ( z ) .  We find 

Thus one finds [26,27] for the distribution of relaxation times a power-law decay, cut 
off by an exponential for times larger than T. Since the exponent in the power law is 
less than unity, it is possible to define two characteristic diverging times [25] for this 
distribution. The first one corresponds to the viscosity, as may be seen directly from 
relation (12) for zero frequency. More precisely, adopting a logarithmic scale, we may 
define the moments of the distribution as 

M,(E) = H ( t ) t ”  d ln(t) .  (14) 

Because M O  does not diverge we have 

TI - M,(E)/MO(E) - - E - ’ .  

Higher order moments diverge with the same exponent, and allow us to recover the 
longest time T that was introduced above: 

(16) T - M 3 / M 2  - M 4 / M 3  - . . . - & - ( S + P ’ ) .  

The first test of these scaling relations was made on the frequency dependence of the 
modulus and is discussed below. Relation (9) shows that the high-frequency dependence 
of the viscosity, which is expected to be independent of the distance E to the threshold 
because one is probing finite regions of space, should behave as a power of the frequency 
o. For the complex modulus, this gives 

E ( w )  - (im)-u/[s+P). (17a) 
The latter relation implies that both the real and imaginaryparts should have a power-law 
behaviour and that the loss angle should be constant. This was checked experimentally by 
several groups, with the experimental result 

p/(s + p)  = 0.70 -+ 0.05. (17b) 

2.2. Exponents 

Whereas the ratio (17b) met with very large agreement among experimentalists, two 
sets of values fors and p were found. These correspond to the cases where hydrodynamic 
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interactions are present in the reaction bath, or Zimm model, or, on the contrary 
where no hydrodynamic interactions are present, or Rouse model. The latter case was 
considered by de Gennes [28] some years ago. He showed that the viscosity diverges as 

(Rouse). (18) q - (p) ,  - ,-P--P) 

This allows the calculation of the exponent p of the modulus: 

pr = v d  (Rouse). (19) 

When hydrodynamic interactions are present, the modulus was calculated in a Flory 
approximation by Roux [29] and Coniglio and Family [30]: 

p z  = ~ ( d  - 2 + D,/2) (Zimm) 

and Kertesz [31] conjectured 

s, = v - p/2 (Zimm). @Ob) 

The latter relation may be recovered within the Flory approximation if we accept the 
relation D - E-1 in the reaction bath between the diffusion coefficient D and the size E 
of the largest polymers. Note that the two models lead to a difference in the viscosity 
exponents by a factor two. 

We conclude this subsection by noting that the situation concerning the exact values 
of the exponents is not resolved at this time. If we accept the idea that two universality 
classes are present for the dynamical properties, then wherever the ratio p / ( s  + p) is 
present, no difference appears between both cases. On the contrary, wherever any of 
the exponents appear a clear difference is to be observed between the classes. 

3. Dilute solutions 

Once the polymers have been synthesized, we assume that the distribution of masses 
P ( N ,  E )  is quenched. In this section we consider the case of dilute solutions, when each 
polymer is sufficiently far from the others so that no interference effects are present 
among the signals due to various polymers in the solution, and that concentration effects 
are only perturbations. In this case, hydrodynamic interactions [32] are clearly present, 
and a Zimm type of dynamics is valid. Thus for any polymer, with any mass Nand radius 
R(N)  in the distribution, one has a longest time of 

T ( N )  - R(W3.  (21) 

Because there is a distribution of masses, one expects a distribution of times. This may 
be estimated in the same way as above. The intrinsic viscosity [q]  of a dilute solution was 
recently calculated [18,33] 

[ q ]  - NL3/' 

where we have used the Flory value of the fractal dimensions of a polymer in the reaction 
bath and in a dilute solution. From relations (21) and (22) it is possible to write down a 
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scaled form of the frequency-dependent viscosity and, with the same kind of trans- 
formation as above, to deduce a scaled form for the distribution of relaxation times in a 
dilute, polydisperse solution of randomly branched polymers. We find 

H d ( t )  - ~ - ~ ' ~ h ( t / N i 5 ' ' ) .  (23 ) 

As above, this spectrum is characterized by two diverging times 

and 

T ,  - Nk?'. 

4. Some consequences 

Several experiments were performed to check these scaling assumptions, including 
quasi-elastic light scattering and viscoelastic measurements. 

4.1. Viscoelasticity 

The frequency dependence of the complex modulus in the reaction bath was investigated 
by Durand et a l [ 3 4 ] ,  Rubinstein et a1 [26],  Martin et a l [33]  and Axelos and Kolb [35].  
As discussed above, however, the interpretation of the ratio p/(s + ,U) (relation (17)), 
is not unique, and both Zimm and Rouse dynamics were used by the various groups. 
Direct measurements of the zero-frequency viscosity were also performed, leading their 
authors to estimate the exponents. Note however that the result of these measurements 
depends crucially on the exact determination of the threshold. It would be extremely 
interesting to determine the viscosity dependence as a function of another measured 
variable, such as the average mass N ,  for instance. Note also that these measurements 
rule out an col/* dependence of the viscosity, as implied by the classical effective medium, 
Rouse, theory [21].  

Relaxation experiments have not been attempted so far. Their results would be 
interesting because different regimes are present: let us consider a sample subject to an 
external constraint such as a force or a shear. When this constraint is released, it 
relaxes to equilibrium. If only one relaxation time z is present, the relaxation process is 
exponential: 

X ,  ( t )  - e -'''. (25) 

Since there is a distribution of relaxation times, the process is a convolution of such 
relaxations. Assuming that the various modes are independent, we get 

X ( t )  - I t - " H ( z )  e-''r dz (26) 

where we assumed that the weight of each mode has a power-law variation. For times 
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smaller than the longest time T ,  the distribution is a power law and we obtain, using 
relation (13) 

(27) X(t) - ts/(s+u)-x, 

For larger times, the distribution is basically an exponential, and neglecting the power- 
law prefactors, we have 

X( t )  -- e-r'T dz.  (28) I 
Estimating the latter integral by steepest descent, we obtain 

x(t> e-(t/T)'*. (29) 

Thus one finds a power law relaxation for times shorter than T ,  followed by a stretched 
exponential for larger times. 

4.2. Light scattering 

In dilute solutions, where no interactions are present among polymers, it was recently 
argued that relaxation of electric birefringence [36] leads to stretched exponential 
behaviour for large times, for the same reason as above: only the exponentially few very 
large polymers still relax for long times. Another set of experiments was performed for 
quasi-elastic light scattering. The results may be summarized as follows [37]. 

(i) For very dilute solutions, an exponential decay is observed. 
(ii) Increasing the concentration, this simple exponential becomes a stretched 

exponential, exp[ - ( t /T )@] ,  with an exponent p which decreases when the concentration 
is increased, and seems to reach an asymptotic value of the order of f  in the semi-dilute 
regime. 

(iii) For still higher concentrations, a power-law decay appears and gradually occu- 
pies the observation range. 

Calculations of the scattered intensity Z(q, t )  [38] in the dilute regime lead, in the very 
low-q limit, to a diffusive limit, with 

Z(q, t) = C N ,  exp( - Dzq2t) (30) 

where 

D, = ~ - 3 8  (31) 

is the effective diffusion coefficient and has an exponent that takes into account both the 
fractal dimension of a single polymer and the polydispersity of the system. This behaviour 
was observed recently by Candau et a1 [39]. 

For qR, ==S 1 and D,q2t + 1, it was found 

4q ,  t> - (CN,/D*q2t) exp(-Dzq2t). (32) 

In the experimental range, this may be interpreted as a pseudo-stretched exponential 
decay with an exponent 0.8. 
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Finally, when the concentration is varied the results are more complicated, and one 
may consider that the problem is still open. 

5. Conclusions 

Whereas there is large agreement that the dynamic properties of randomly branched 
polymers are characterized by a very broad distribution of relaxation times, the exact 
exponent of the power-law decay is still under discussion. More precisely, it is not clear 
at this time that only one universality class is present in the reaction bath for all systems, 
whereas this is accepted for dilute solutions. Such a broad distribution leads to non- 
exponential relaxations, such as power laws or stretched exponentials as discussed 
above. However, more experimental results are clearly needed to resolve this fascinating 
and practically very important question. 
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